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1. INTRODUCTION 
     The uniform flow past a circular cylinder in an 

unbounded domain has been investigated by many 

researchers both experimentally and numerically due to 

the practical importance of the flow. The flow in this type 

is characterized by the cylinder diameter (D), the free 

stream velocity (U) and the Reynolds number (Re). For 
flow past a circular cylinder, the separation of boundary 

layer on the cylinder surface begins  at  Reynolds number 

equal to 5 [1].  A pair of steady symmetric vortices 

develops behind the cylinder between Reynolds numbers 

10 to 40 and the length of re-circulation zone grows 

linearly with increase in Reynolds number [2]. It is 

established that vortex shedding occurs for Reynolds 

number above 49. The vortex shedding flow remains 

laminar for Reynolds number up to around 150 [2]. 

Transition to three dimensional flow starts at Reynolds 

number of  around 180-194, depending on experimental 
condition and ends at Reynolds number equal to about 

260 at which fine scale three dimensional eddies appear 

[3]. The vortex shedding is regular and the Strouhal 

number, which represents vortex shedding frequency, 

remains unchanged. In Reynolds number from 300 to 1.4 

x 105,the flow is in the sub-critical regime and the 

boundary layer along with the surface of the cylinder  

 

 

 

 

 

 

 

remains laminar throughout the circumference until flow  

separation takes place[4]. The vortex shedding is regular  

and the Strauhal number, which represents vortex 

shedding frequency, remains unchanged. 

        In the Reynolds number 5 to 40, Coutanceau and 

Bouard [5] measured the separation point and the length 
of the recirculation zone for single cylinder. They also 

measured the initial time evolution of the separation 

point and the formation length for an impulsively started  

cylinder[6].  Braza et al.[7] presented the time evaluation 

of the front stagnation point of a circular cylinder for 

Reynolds number up to 1000 based on finite volume 

solution to the Navier-Stokes equations. Karniadakis et 

al.[8] investigated forced convection heat transfer from 

an isolated cylinder in cross flow for Reynolds numbers 

up to 200 by direct numerical solution. In their paper they 

presented spatial structure of von Karman vortex street, 
the unsteady lift and drag co-efficient and unsteady local 

heat transfer co-efficient. They compared their results 

with available experimental data and found good 

agreement with it. D’Alessio and Dennis [9] have also 

developed a vorticity based technique to study the flow 

past a circular cylinder in an unconfined domain. The 

results are consistent with the boundary-layer flow 

approximation for sufficiently large values of the 

Reynolds number and with the asymptotic solution 
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obtained for low Reynolds number, at large distance 

from the cylinder. The authors also computed the various 

flow parameters for Reynolds number up to 100. Ding et 

al. [10] describe an efficient method for simulating 

two-dimensional steady and unsteady incompressible 

flow through a hybrid approach which combines the 

conventional finite difference scheme and mesh-less 

least square based finite difference method. They 

claimed that the new approach greatly improves the 
computational efficiency.  

     In this study, the two dimensional Navier-Stokes 

equations for time-dependent, viscous, incompressible 

flow along with continuity and energy equation are 

solved using vorticity-stream function formulation by 

finite difference method. The numerical method 

developed in this study is verificated against the 

benchmark problem of uniform flow past an unbounded 

circular cylinder. With this numerical procedure, the 

vortex shedding, vorticity isolines as well as heat transfer 

aspects across a circular cylinder in an unbounded 

domain are investigated.  
 

2. MATHEMATICAL FORMULATION AND 
   NUMERICAL SCHEME 
    In Cartesian co-ordinate systems, the non-dimensional 

governing equations, expressed in terms of vorticity and 

stream function, are written as, 
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where   represents vorticity,   denotes stream function, 

and  v,uu , denote the components of velocity, 
which can be calculated from the stream function: 
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The energy equation is expressed as: 
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     In order to solve equations (1), (2), (3) and (4) in a 

curvilinear co-ordinate system, the following co-ordinate 

transformations are used:  
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in which ),(  is the co-ordinate system in the 
computational plane. With the above transformation, the 

non-dimensional equations (1), (2), (3), and (4) are 

transformed into the computational co-ordinates 
),( 

 
and written as: 
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where, subscripts denote differentiation and coefficients 

are given by  
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      The solution of these transformed equations in the 
computational plane for unsteady flow starts with known 

uniform velocity and temperature field at inlet and 

always constrained by the boundary conditions. 

 

3. PHYSICAL FLOW FIELD AND NUMERICAL 
PARAMETERS 

    A rectangular flow field is considered in this study as 

shown in Fig.1. The cylinder is considered at a distance 

of 5D from the inlet boundary and bottom boundary. The 

upper boundary of the computational domain is set at a 

distance of 10D from bottom wall and outlet boundary is 

set at 25D distance from cylinder center.  
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Fig 1. Configuration and boundary conditions of the flow 

 

 

 
 

 Fig 2. Mesh at upper half of the flow field. 

 

      Thompson, Thames, Mastin (TTM) method of 

generation of automatic boundary fitted co-ordinate 
generation system is used to construct the grids of the 

physical flow field. In this study, finite difference 

implicit method is used to solve the transformed 

governing equations.  

      A typical mesh arrangement (244 x 90) of complete 

flow field is considered. By (244 x 90) mesh, it is implied 

that there are 244 nodes in the longitudinal and 90 nodes 

in the transverse direction, respectively, with 72 nodes on 

cylinder surface. The mesh at upper half of the cylinder  

is shown in Fig. 2. 

     In this study, calculations are performed with a 
non-dimensional time step of t = 0.002. Care was taken in 
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refining the grid around the cylinder so that the smaller 

size of grid is around 0.002 to satisfy the convective 

stability condition and the diffusive accuracy.  

 

4.  BOUNDARY CONDITIONS        
      At inlet, uniform longitudinal velocity and zero 

transverse velocity is considered. No-slip boundary 

conditions are imposed on the cylinder surface. 

Boundary conditions for vorticity and stream function 
are described as follows:  

The no slip boundary conditions for vorticity at cylinder 

surface can be written as per Thom’s formula [11],  
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where (ic, jc) denotes the nodes on the cylinder surface 

and  jc,ich
 is the radial distance between cylinder 

surface and first body fitted node around the cylinder. 

 

4.1 Boundary Condition for Stream Function at   
Cylinder Surface: 

     The no penetration boundary condition for u 

indicates that at cylinder surface  

                          
ttancons            (12)                                                                                  

       while no-slip boundary condition for u at cylinder 

surface  shows that  
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the value of ψ cyl  is constant , which is updated for 

unsteady flow at every time step.            

 

5. NUSSELT NUMBER 
     The local Nusselt number and average Nusselt 

number around the cylinder are determined by the 

following expression: 

  Local Nusselt number : 
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The local Nusselt number varies with angle around the 

cylinder. The angle,   is measured clockwise from the 
forward stagnation point. 

 

6. RESULTS AND DISCUSSIONS 
     From the governing equations it is seen that the heat 

transfer and fluid flow characteristics depends upon 
Reynolds number and  Prandtl number. In this  paper the 

fluid is considered to be air with a Prandtl number of 

0.705.  In the following section, discussion is carried out  

on the transient aspects of the flow past the cylinder in an 

unbounded domain.  

 

6.1 Recirculation Zone and Separation Angle 
     It is well known that the flow pattern changes with 

the Reynolds number. For Reynolds number up to 

approximately 49, the flow maintains a stable pattern 

with an attached pair of symmetrical vortices behind the 

cylinder. Numerical simulation is carried out for three 

small Reynolds numbers of 10, 20 and 40, respectively 

and the streamline patterns for these three Reynolds 

numbers are depicted in Fig. 4. In all cases, a pair of 
steady symmetric vortices develops behind the cylinder 

and is aligned symmetrically. These results are in good 

agreement with other researchers [12, 13] in terms of the 

flow parameters such as length of the recirculation zone, 

Lsep, and separation angle, θsep measured from the rear 

stagnation point of the cylinder to the end of the 

re-circulating region (Fig. 3) as presented in Table 1. 

 
Fig 3. Definition  re-circulation zone length (Lsep) and 

separation angle (θsep) 

 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig 4.  Streamlines for an unbounded cylinder: (a) Re = 

10, (b) Re = 20 and (c) Re = 40. 
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Table 1: Comparison of re circulation zone length (Lsep) 

and separation angle (θsep)  for Re = 10, 20 and 40. 

 
Re  Dennis 

et al. 
[12] 

Takami 

et al. 
[13] 

Present 

10 Lsep 0.252 0.249 0.26 

θsep 29.6 29.3 30.0 

20 Lsep 0.94 0.935 0.90 

θsep 43.7 43.7 43 

40 Lsep 2.35 2.32 2.08 

θsep 53.8 53.6 52 
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t = τ/3 

 

 
t = 2τ/3 

 

 
t = 3τ/3 

 

Fig 5. The vortex shedding from an unbounded cylinder 

in a time cycle for Re = 100. 

 

 

6.2 Vortex Shedding 
       At moderate Reynolds number, greater than 

approximately 49 and up to 150, the flow still remains 

laminar. Due to instability of shear layers on the wake of  

the cylinder, two- dimensional vortex shedding leads to 

the formation of von Karman vortex street; however, the 

flow is unsteady now. At a Reynolds number of 100, 

typical streamline patterns of the unsteady flow past an 

unbounded cylinder in a cross flow for a complete time 
cycle, of period τ is shown in Fig. 5, which are in good 

agreement with Karniadakis [8].  It is clear that 

periodicity of flow field is maintained in the Figure. 

 

 
t=0 

 
t = τ/3 

 
t = 2τ/3 

 
t = 3τ/3 

 

Fig 6. The vorticity contours  from an unbounded 

cylinder in a time cycle for Re = 200. 
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6.3 Vorticity Isolines 
     Fig. 6 shows the unsteady periodic shedding regime 

of vorticity isolines for Reynolds numbers of 200 over 

one time period.  The positive (solid lines) and negative 

(dotted lines) vorticity contours are shown in the plot.  As 

can be seen, the structure of vorticity field for the 

Reynolds numbers 200 is analogous to the classic von 

Karman vortex street. The clockwise negative vortices 

shed from upper side of the cylinder and they occupy the 
upper portion of the street. The anti-clockwise positive 

vortices shed from the lower side of the cylinder and they  

occupy the lower portion of the street.   
 

6.4 Time Evolution of Average Nusselt Number 
     The time-evolution of Nusselt number, averaged over 

the surface of an unbounded cylinder, for different 

Reynolds numbers are shown in Fig. 7. As expected, at  

Reynolds number 40, no oscillations are observed as the 

flow remains steady and no vortex shedding takes place. 

Regularity of oscillations, as shown, for Reynolds  

 

 

 

 

 
 

Fig 7. Time-evolution of the average Nusselt number for 

an unbounded cylinder for different Reynolds numbers 

 

number higher than 40 indicates shedding of vortices at 

regular time interval. It is also evident from Fig. 7 that as 

the frequency of vortex shedding increases, the 

amplitude of the fluctuating average Nusselt number also 

increases with Reynolds number. Time-evolution of 

average Nusselt number for Reynolds number Re = 100, 

80 and 60 also confirm this observation. The periodic rise 

and fall of average Nusselt number, as shown in Fig. 7, 

over a period of each shedding cycle is the consequence 
of development (formation and growth) and subsequent 

detachment of the pair of vortices in a cyclic manner at 

the wake of the cylinder. It is to be noted that there exists 

strong dissimilarity as far as the pattern of variation of 

average Nusselt number in each time cycle is concerned. 

This can be explained by the formation 

-growth-detachment cycle of vortices at the wake and its 

effect on heat transfer at the surface of the cylinder. For 

example, the formation and gradual growth of an eddy on 

either side of the cylinder may be assumed to be 

responsible for pushing off the main flow away from the 

cylinder surface. This is characterized by the sharp fall in 
the Nusselt number. On the contrary, detachment of an 

eddy, after the attainment of the critical size, is associated 

with splashing of the cylinder surface by the fresh fluid 

from mainstream and this results in a sharp increase in 

average Nusselt number. So it is seen that in a shedding 

cycle, for each of the two eddies, the Nusselt number 

initially decreases and then subsequently increases. 

Therefore, in a complete shedding cycle, starting from 

the growth to the detachment of eddies on either side of 

the cylinder, there  have two time intervals when Nusselt 

number increases and in the other two intervals, Nusselt 
number decreases. This explanation is in confirmation to 

the pattern of variation of the Nusselt number as shown 

in Fig. 7.  

 

7.  CONCLUSION  
      In this numerical study, heat transfer for 

non-isothermal flow past a circular cylinder in an 

unbounded domain is considered. An implicit finite 

difference method is used and solution to the 

two-dimensional Navier-Stokes equation and Energy 

equation for  laminar unsteady incompressible viscous 
flows has been obtained. The flow is calculated for 

Reynolds Numbers range from 20 to 200 . Based on the 

numerical solutions, effect of Reynolds Numbers on 

fluid parameters are investigated. 

      The major findings are summarized below. 

 a. At low Renolds number up to 40, a pair of steady 

symmetric vortices develops behind the cylinder and is 

aligned symmetrically. Re circulation zone length and 

separation angle increases with Renolds number. 

 b. At higher Renolds number, in the vortex shedding 

regime, the clockwise negative vortices shed from upper 

side of the cylinder and they occupy the upper portion of 
the street. The anti-clockwise positive vortices shed from 

the lower side of the cylinder and they occupy the lower 

portion of the street.  

c. As the Reynolds number increases, the  frequency of 

vortex shedding increases as seen from the Time – 

evolution of the average Nusselt number, the amplitude 

of the fluctuating average Nusselt number also increases. 
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d. The periodic rise and fall of average Nusselt number 

on the time-evolution of Nusselt number,   over each of 

shedding cycle is the consequence of development 

(formation and growth) and subsequent detachment of 

the pair of vortices in a cyclic manner at the wake of the 

cylinder.  
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